Effects of field storage method on E. coli concentrations measured in storm water runoff.
نویسندگان
چکیده
Storm water runoff is increasingly assessed for fecal indicator organisms (e.g., Escherichia coli, E. coli) and its impact on contact recreation. Concurrently, use of autosamplers along with logistic, economic, technical, and personnel barriers is challenging conventional protocols for sample holding times and storage conditions in the field. A common holding time limit for E. coli is 8 h with a 10 °C storage temperature, but several research studies support longer hold time thresholds. The use of autosamplers to collect E. coli water samples has received little field research attention; thus, this study was implemented to compare refrigerated and unrefrigerated autosamplers and evaluate potential E. coli concentration differences due to field storage temperature (storms with holding times ≤24 h) and due to field storage time and temperature (storms >24 h). Data from 85 runoff events on four diverse watersheds showed that field storage times and temperatures had minor effects on mean and median E. coli concentrations. Graphs and error values did, however, indicate a weak tendency for higher concentrations in the refrigerated samplers, but it is unknown to what extent differing die-off and/or regrowth rates, heterogeneity in concentrations within samples, and laboratory analysis uncertainty contributed to the results. The minimal differences in measured E. coli concentrations cast doubt on the need for utilizing the rigid conventional protocols for field holding time and storage temperature. This is not to say that proper quality assurance and quality control is not important but to emphasize the need to consider the balance between data quality and practical constraints related to logistics, funding, travel time, and autosampler use in storm water studies.
منابع مشابه
Effects of Rainfall on E. coli Concentrations at Door County, Wisconsin Beaches
Rainfall and its associated storm water runoff have been associated with transport of many pollutants into beach water. Fecal material, from a variety of animals (humans, pets, livestock, and wildlife), can wash into beach water following rainfall and result in microbial contamination of the beach. Many locales around the world issue pre-emptive beach closures associated with rainfall. This stu...
متن کاملLevels and patterns of fecal indicator bacteria in stormwater runoff from homogenous land use sites and urban watersheds.
Routine stormwater monitoring programs focus on quantification of average fecal indicator bacteria (FIB) concentration at the terminal watershed discharge point. While important for permit compliance, such monitoring provides little insight into relative bacteria levels from different land use types or the mechanisms that influence FIB concentrations. The goal of this study was to quantify the ...
متن کاملPerformance of compost filtration practice for green infrastructure stormwater applications.
Urban storm water runoff poses a substantial threat of pollution to receiving surface waters. Green infrastructure, low impact development, green building ordinances, National Pollutant Discharge Elimination System (NPDES) storm water permit compliance, and Total Maximum Daily Load (TMDL) implementation strategies have become national priorities; however, designers need more sustainable, low-co...
متن کاملWatershed and land use-based sources of trace metals in urban storm water.
Trace metal contributions in urban storm water are of concern to environmental managers because of their potential impacts on ambient receiving waters. The mechanisms and processes that influence temporal and spatial patterns of trace metal loading in urban storm water, however, are not well understood. The goals of the present study were to quantify trace metal event mean concentration (EMC), ...
متن کاملEffects of Agricultural Management, Land Use, and Watershed Scale on E. coli Concentrations in Runoff and Streamflow
Fecal contamination of surface waters is a critical water quality concern with serious human health implications. Many states use Escherichia coli as an indicator organism for fecal contamination and apply watershed models to develop and support bacterial Total Maximum Daily Loads (TMDLs); however, model applicability is greatly restricted due to the sparse availability of E. coli data for vali...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental monitoring and assessment
دوره 188 3 شماره
صفحات -
تاریخ انتشار 2016